【国际赛事】2017年(日内瓦)CERN高中生物理项目设计大赛(BL4S)报名开始!
发布日期:2017-01-05 09:17:21   阅读数:906


  上海青少年科学社将选拔优秀学生组队参加2017年(日内瓦)CERN(欧洲核子研究组织)高中生物理项目设计大赛。该大赛至今已举办四年,每年都有来自全球各地的500多个小组参赛。大赛旨在增加高中生对自己研究项目方面的物理知识,同时为他们提供科学实验平台,让学生们有机会获得CERN的专家指导学生完善物理项目。获得一等奖的学生还有机会免费在2017年8月至10月之间前往位于日内瓦的CERN,在那里使用粒子束加速器共同进行原创的物理项目研究。(日内瓦)CERN高中生物理项目设计大赛将以小组为单位参赛,每小组人数至少5人至多9人,小组成员可来自不同学校,年龄要求为16岁及以上。上海青少年科学社将优先挑选高级会员,非上海青少年科学社高级会员也可报名。

 


提示

  

  请点击下方报名链接,报名参加2017年(日内瓦)CERN高中生物理项目设计大赛。

>>>>>>>>>>>>>报名链接<<<<<<<<<<<<<


关于2017年CERN高中生物理项目设计大赛




时间:


2017年8月至10月中的10—12天


地点:


瑞士日内瓦


年龄要求:


16岁及以上高中学生


能力要求:


对物理学科和数学学科有强烈的热情且能力突出(需要学业成绩和课外相关活动证明);高中学生;致力于在高校学府深造科学学科的学生;英语听说能力优;在提交材料之前了解离子束及相关实验设施相关知识; 


小组物理项目相关要求:


项目报告语言必须为英文。项目必须是自己和组员的原创项目,如使用任何他人版权作品,包括文章、图片、视频、音乐等,必须获得版权人同意方可使用。明确自己的项目有哪些优势能够在世界顶级的粒子物理实验室进行实施。前期确定项目阶段可以寻求老师或物理专家的帮助,共同讨论自己项目想法的可行性。进行官方注册后可获得CERN及物理团队提供的前期准备帮助。


报名方式:


网上报名并按照要求提交材料


网上报名截止日期:


2017年1月30日


材料提交截止日期:


2017年3月20日


提交材料内容须包含:


A. 1分钟的具有原创性、创新性、趣味性的项目摘要介绍及组员介绍视频(视频格式,50MB以内)

B. 小组原创物理项目英文报告(1000个英文单词以内)一份



小组原创物理报告须涵盖如下内容:

1. Briefly (around 100 words) why you want to come to CERN;

2. In detail (around 800 words) how you would like to use the particle beamline for your experiment.

3. Briefly (around 100 words) what you hope to take away from the experience;


提英文项目报告分标准


· Feasibility of the proposal

· Motivation of the students

· Creativity

· Demonstration of ability to follow the scientific method


 

小组奖项设置

一等奖(2组):

一等奖获奖小组所有组员将获得全额资助于8月至10月之间前往日内瓦CERN进行为期10-12天的研究项目实施,具体时间将和获奖小组进一步商榷。不能前往CERN的组员可以参与远程数据分析及实验。

 

二等奖:

二等奖获奖小组,即通过CERN科学家委员会预选并送报CERN下设的SPSC委员会的小组,将获得一个多功能粒子探测器(CosmicPi)以及每个组员均会获得大赛T恤衫一件。

 

所有小组将会获得由CERN提供的参与证书。



往届项目摘要选:

Example 1: Use muon tomography to look for hidden chambers in pyramids (2016 winning proposal, Pyramid hunters) 

You may know computer tomography from medical imaging. X-rays are used to take many 2-D images of a patient. Then a computer program processes them and creates a 3-D image that helps the radiologist to make a proper diagnosis. In archaeology the same technique can be used to explore the internals of very fragile objects such as mummies or papyrus scrolls. For very largo objects such as a Pyramid X-rays are not appropriate. Luckily there is another particle, the muon, that can penetrate hundreds of meters of stone. Researchers have used muons produces by cosmic radiation to study the structure of pyramids and Volcanos. The team “Pyramid hunters” had a look at data from a survey of the Chephren pyramid performed in 1970. They observed that some of the data did not agree with expectations and may indicate the presence of yet undiscovered chambers. In order to better understand the data from the 1970 survey they proposed to measure more precisely the interaction (absorption, scattering) of muons in limestone. This is a very nice example of interdisciplinary research; combining particle physics with geology and archaeology.

  

Example 2: measure the Lorentz factor (2016 winning proposal, Relatively special) 

The Lorentz factor is the factor by which time, length and relativistic mass change for an object while that object is moving. If the object is an instable particle, such as a pion, an observer at rest will measure a decay time that is different from the decay time in the frame of the particle. Likewise, the velocity of a particle that is accelerated to high energies will not increase proportionally but the velocity will asymptotically approach the speed of light while the mass of the particle increases. The team “Relatively special” proposed the measure this effect on the time of flight of protons as well as on the decay time of pions. With their proposal they demonstrated that some of the consequences of the theory of special relativity can be understood and measured by high school students.

 

Example 3: Use a Webcam as a particle detector (2015 winning proposal, Leo4G) 

Successful proposals for the Beamline for Schools competition don’t have to be complicated to be successful. The team Leo4G asked a very simple but creative question: Can a particle beam be photographed with a commercial Webcam? The CMOS sensors used in such devices are made from silicon. When 2 charged particles cross the image sensor they will ionize the silicon and these charges may be large enough to be detected by the sensor. If a Webcam indeed is able to detect particles if could be used as a low cost detector, for example to observe cosmic radiation in the classroom.

 

Example 4: Pion decay (2015 winning proposal, Accelerating Africa)

High energetic gamma radiation is a very important tool for many applications in nuclear research but hard two produce. It can be generated by injecting particle beams into magnetic undulators but this requires expensive and complicated devices. It has been suggested that a crystalline undulator (for example a carbon crystal with boronated layers) could be used to produce “light” in the gamma-ray regime. The team placed their crystal into the beam and tried to align the lattice to the axis of the beam. Behind the crystal, charged particles in the beam were deflected with a magnet while the gamma rays produced in the crystal were detected by calorimeter. The Cherenkov detectors were used to identify positrons (as they were believed to produce the most gamma rays) and a scintillator was used as a trigger.

 

Example 5: Measure the particle composition of the beam line at various beam momenta 


The incoming 24 GeV/c primary proton beam from the PS impinges on a target. The collisions of the protons with the target nuclei provide a variety of particles. The T9 secondary beam line is set up to select the particles of various momenta, between 0.5 and 10 GeV/c. This selection is based on the deflection in the bending magnets (Bends 1-3) and the collimator, and is further refined by quadrupole lenses. All particles arriving in the experimental area are counted by two scintillators, SCINT 1 and 2, and their directions are measured with two delay wire chambers DWC1 and 2. 4 Two Cherenkov counters, installed at the beam entrance into the experimental area allow a first particle identification, as they only give a light signal in case the particle velocity is above a certain adjustable threshold, i.e. if the particle mass is below a set value. A second information can be obtained using a lead absorber that is inserted into the beam. Electrons will lose a large amount of their energy in the lead whereas most of the hadrons cross the absorber essentially unobstructed. The particles that have interacted or undergone hard scattering in the absorber are flagged with a halo counter. A magnetic spectrometer is installed inside the T9 experimental zone and it consists of the large aperture MNP17 dipole magnet, another delay wire chamber DWC 3 and the scintillator SCINT 3. With this equipment one can analyze the momentum of the particles emerging from the absorber and count the ones that still have the initial momentum (i.e. the hadrons). Another redundant measurement is provided with an electromagnetic calorimeter. This allows measuring the energy correctly for electrons, but gives a much lower response for the other particles in the beam. This detector thus allows measuring the electron content in the beam when the absorber is removed. Finally, a muon filter in the form of a massive iron block can be installed on the beam line, just downstream of the MNP17 magnet. All particles except the muons in the beam are absorbed in the Iron. The count rate in Scint3 will thus be a measurement of the muon content of the beam.

 


*关于欧洲核子研究组织

  欧洲核子研究组织(英语:European Organization for Nuclear Research,1954年9月29日- ),通常被简称为CERN,是世界上最大型的粒子物理学实验室,也是万维网的发祥地。它的内部深藏着一个升降机,整个机构位于瑞士日内瓦西部接壤法国的边境。它成立于1954年9月29日,为科学家提供必要的工具。他们在那里研究物质如何构成和物质之间的力量。最初,欧洲核子研究组织的签字发起人只有12位,现在会员增加到21名成员国。以色列是第一个也是目前唯一一个非欧洲成员国。


关于上海青少年科学社高级会员选拔赛
1

一、 为什么要参加高级会员选拔赛?

  高级会员选拔赛可等同于国际青少年科技赛事上海选手入选赛,旨在选拔出上海地区对科学感兴趣的高素质学生,推荐参加各项国际青少年科技赛事,开展规范化的赛前热身准备活动,定期的一对一专家课题辅导,密集的赛前英文答辩演练,帮助学生提高科学文化素养,以及规范化科学研究过程,并提升学生的演讲能力及领导力。

二、高级会员的活动有哪些? 

  高级会员从申报结束后会对所有申报学生开展模拟竞赛活动,课题研究规范化说明会,各项国际赛事推介会及咨询会,选拔成为高级会员后会针对参赛学生进行定期密集课题项目辅导、跟踪课题进展、项目动态及方向、依托丰富资源进行资质评估、赛前密集英文答辩能力辅导。

三、高级会员选拔赛面向的学生群体是?

  高级会员面选拔赛面向致力于参加国际赛事及交流活动的小学高年级(4-6年级)、初中(7-9年级)及高中(10-12年级)在读学生。国际赛事及交流活动主要分为两组,小初组和高中组。小初组赛事活动年龄要求在15岁或16岁以下,而高中组赛事活动要求在15岁或16岁以上,准确年龄根据具体赛事要求而定。因此,高级会员也分为小初组及高中组。

四、高级会员、研究会员、英才会员冲突吗?

  不冲突。高级会员与其他会员平行开展,并不与研究会员及英才会员发生冲突。高级会员的等级在研究会员及英才会员只上,对项目完成度及成熟度要求更高。

五、高级会员是否收费?

  高级会员收费在研究会员及英才会员名单确定之后进行。如果当年成为研究会员及英才会员,并且最后被选拔成为高级会员,则不再收取高级会员会费,只需要承担自己参加比赛的费用。

  10月初仍为非研究会员或非英才会员,则收取高级会员会费,费用和研究会员费用一致。

六、高级会员的会员时限是多久?

  高级会员时限为一个学年,从当年9月初开始至次年8月结束。

七、什么时候开始准备申报高级会员最合适?

小编建议从5月开始着手准备:

  5月申报研究会员,经过一年的培育后→第二年3月参加上海市青少年科技创新大赛→第二年6月申报高级会员→第二年暑期参加科学社举办的高级会员入选赛及相关活动→第二年9月成为高级会员→第三年开始参加国际赛事。

1

八、小初学生是否可以参加国际赛事?

  可以。上海青少年科学社针对小学高年级(4-6年级)及初中(7-9年级)学生会组织相应的小初组国际科学竞赛的选拔,请大家紧密关注上海青少年科学社公众微信号的推送。



* 上海青少年科学社高级会员风采

  通过选拔的高级会员将获得推荐参加2017年国际赛事的资格。在上海青少年科学社成立的这十多年间,每年都有高级会员参加各类赛事,其间播撒了无数科学的种子,帮助各级学生们顺利完成各项科学研究,并在国内外科技舞台上大放异彩,累积获得国际奖项近百余项。获奖选手中不乏高中毕业后被国内顶尖大学录取作为科研重点培养的学生,更有迈入国际顶尖学府继续深造求学的学生,并在各专业内有所成就。


关于上海青少年科学社

  上海青少年科学社依托市科协下属学会、协会、研究会的资源,自2003年成立以来始终坚持素质教育与拔尖人才培育相结合,引导青少年树理想、爱科学、圆梦想,积极开展主题科普活动、国内外青少年科技交流活动、科技创新课程研究、英才教师培育等系列工作。历经十年发展和探索,科学社已逐步发展为培育科技创新后备人才的重要基地,拥有16个学科组3500多名一流科学家、上海学科和科技领军人才组成的学会专家团队;800多名重点高校和科研院所在读硕士生、博士生组成的助教团队;建立了100个科学种子实践基地;自主研发了100套科学教育课件,创立科学导航60分、STEM素养60分、金奖集荟等品牌课程资源。每年招收学生会员3000多人,他们在国内外青少年科技创新赛事中的获奖率高达98%以上。


联系人:薛老师

联系电话:021-53881008

联系邮箱:intl@shssp.org